Biopolym. Cell. 2025; 41(4):235.
Огляди
Клінічно-значущі молекулярні порушення мітохондрій при канцерогенезі та вікових захворюваннях: сучасний стан і перспективи: Частина 1. Схильність до захворювань та діагностичне значення
1Геращенко Г. В., 1Тукало М. А.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03143

Abstract

Порушення функціонування мітохондрій пов’язано з ознаками раку, старіння та вікових хвороб. За останні роки виявлені численні молекулярні порушення мітохондрій на рівні ДНК, РНК, білків, метаболічних зсувів та перепрограмування метаболізму при різних видах раку та вікових хворобах. У огляді проаналізовано низку клінічно-значущих параметрів мітохондріальних порушень, зокрема схильність до розвитку хвороб, діагностика, прогноз та перебіг означених патологій. Прояви мітохондріальної дисфункції на молекулярному рівні постійно уточнюються та доопрацьовуються, тому у перспективі можна очікувати появу нових клінічно-значущих ознак цих порушень при раку та вікових хворобах.
Keywords: мітохондрія, соматичні та термінальні генетичні порушення, метаболічне перепрограмування, рак, вікові захворювання, клінічно-значущі порушення

References

[1] Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol. 2023; 14:1114231.
[2] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70.
[3] Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1):31-46.
[4] López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023; 186(2):243-78.
[5] van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol. 2020; 8:594416.
[6] López-Otín C, Kroemer G. Hallmarks of Health. Cell. 2021; 184(1):33-63.
[7] Seyfried TN, Chinopoulos C. Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites. 2021; 11(9):572.
[8] Gerashchenko GV, Kashuba VI, Tukalo MA. Key models and theories of carcinogenesis. Biopolym Cell. 2023; 39(3):161-9.
[9] Xu X, Pang Y, Fan X. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduct Target Ther. 2025; 10(1):190.
[10] Barzilai DA. Mikhail 'Misha' Blagosklonny's enduring legacy in geroscience: the hyperfunction theory and the therapeutic potential of rapamycin. Aging (Albany NY). 2025; 17(1):1-15.
[11] Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Vera DL, Lu YR, Pippin JW, Creswell ML, Dou Z, Xu C, Mitchell SJ, Das A, O'Connell BL, Thakur S, Kane AE, Su Q, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta AM, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, El Andari J, Grimm D, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, Palmeira CM, Seidman JG, Seidman CE, Wolf NS, Kreiling JA, Sedivy JM, Murphy GF, Green RE, Garcia BA, Berger SL, Oberdoerffer P, Shankland SJ, Gladyshev VN, Ksander BR, Pfenning AR, Rajman LA, Sinclair DA. Loss of epigenetic information as a cause of mammalian aging. Cell. 2023; 186(2):305-326.e27.
[12] Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol. 2021; 22(1):54-70.
[13] Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel). 2024; 15(5):617.
[14] Gómez J, Mota-Martorell N, Jové M, Pamplona R, Barja G. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector. Exp Gerontol. 2023; 174:112134.
[15] Smith ALM, Whitehall JC, Greaves LC. Mitochondrial DNA mutations in ageing and cancer. Mol Oncol. 2022; 16(18):3276-94.
[16] Ziada AS, Lu MY, Ignas-Menzies J, Paintsil E, Li M, Ogbuagu O, Saberi S, Hsieh AYY, Sattha B, Harrigan PR, Kalloger S, Côté HCF; CIHR team grant on cellular aging, HIV comorbidities in women, children (CARMA). Mitochondrial DNA somatic mutation burden and heteroplasmy are associated with chronological age, smoking, and HIV infection. Aging Cell. 2019; 18(6):e13018.
[17] Parakatselaki ME, Ladoukakis ED. mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel). 2021; 11(7):633.
[18] Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci. 2021; 22(9):4524.
[19] Sangha AK, Kantidakis T. The Aminoacyl-tRNA Synthetase and tRNA Expression Levels Are Deregulated in Cancer and Correlate Independently with Patient Survival. Curr Issues Mol Biol. 2022; 44(7):3001-17.
[20] Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013; 106(1):135-59.
[21] Posse V, Gustafsson CM. Human Mitochondrial Transcription Factor B2 Is Required for Promoter Melting during Initiation of Transcription. J Biol Chem. 2017; 292(7):2637-45.
[22] Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol. 2024; 25(2):119-32.
[23] Vučković A, Freyer C, Wredenberg A, Hillen HS. The molecular machinery for maturation of primary mtDNA transcripts. Hum Mol Genet. 2024; 33(R1):R19-R25.
[24] Lei T, Rui Y, Xiaoshuang Z, Jinglan Z, Jihong Z. Mitochondria transcription and cancer. Cell Death Discov. 2024; 10(1):168.
[25] Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays. 2023; 45(3):e2200160.
[26] Bauer MF, Hofmann S, Neupert W, Brunner M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 2000; 10(1):25-31.
[27] Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal. 2023; 39(10-12):635-83.
[28] Fuentes JM, Morcillo P. The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases. Cells. 2024; 13(7):609.
[29] Baker N, Patel J, Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion. 2019; 49:259-68.
[30] Yang M, Li C, Sun L. Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome. Curr Med Chem. 2021; 28(7):1347-62.
[31] Whitehall JC, Greaves LC. Aberrant mitochondrial function in ageing and cancer. Biogerontology. 2020; 21(4):445-59.
[32] Tian T, Fan J, Elf SE. Metabolon: a novel cellular structure that regulates specific metabolic pathways. Cancer Commun (Lond). 2021; 41(6):439-41.
[33] Kopinski PK, Singh LN, Zhang S, Lott MT, Wallace DC. Mitochondrial DNA variation and cancer. Nat Rev Cancer. 2021; 21(7):431-45.
[34] Tasdogan A, McFadden DG, Mishra P. Mitochondrial DNA Haplotypes as Genetic Modifiers of Cancer. Trends Cancer. 2020; 6(12):1044-58.
[35] Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. Curr Genomics. 2013; 14(3):195-203.
[36] Cavalcante GC, Ribeiro-Dos-Santos Â, de Araújo GS. Mitochondria in tumour progression: a network of mtDNA variants in different types of cancer. BMC Genom Data. 2022; 23(1):16.
[37] Cavalcante GC, Marinho ANR, Anaissi AK, Vinasco-Sandoval T, Ribeiro-Dos-Santos A, Vidal AF, de Araújo GS, Demachki S, Ribeiro-Dos-Santos Â. Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep. 2019; 9(1):15716.
[38] Fang H, Shen L, Chen T, He J, Ding Z, Wei J, Qu J, Chen G, Lu J, Bai Y. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer. 2010; 10:421.
[39] Andrews SJ, Fulton-Howard B, Patterson C, McFall GP, Gross A, Michaelis EK, Goate A, Swerdlow RH, Pa J; Alzheimer's Disease Neuroimaging Initiative. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiol Aging. 2020; 87:138.e7-138.e14.
[40] Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst. 2020; 112(12):1259-66.
[41] Hua S, Li M, Zhao Q, Wang J, Zhou Y, Liu J, Fang H, Jiang M, Shen L. Mitochondrial DNA Haplogroup N9a Negatively Correlates with Incidence of Hepatocellular Carcinoma in Northern China. Mol Ther Nucleic Acids. 2019; 18:332-40.
[42] Bilal E, Rabadan R, Alexe G, Fuku N, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Ruckenstein A, Bhanot G, Tanaka M. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS One. 2008; 3(6):e2421.
[43] Ghezzi D, Marelli C, Achilli A, Goldwurm S, Pezzoli G, Barone P, Pellecchia MT, Stanzione P, Brusa L, Bentivoglio AR, Bonuccelli U, Petrozzi L, Abbruzzese G, Marchese R, Cortelli P, Grimaldi D, Martinelli P, Ferrarese C, Garavaglia B, Sangiorgi S, Carelli V, Torroni A, Albanese A, Zeviani M. Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians. Eur J Hum Genet. 2005; 13(6):748-52.
[44] Sena-Dos-Santos C, Moura DD, Epifane-de-Assunção MC, Ribeiro-Dos-Santos Â, Santos-Lobato BL. Mitochondrial DNA variants, haplogroups and risk of Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord. 2024; 125:107044.
[45] Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem. 2019; 294(14):5386-95.
[46] Al-Gadi IS, Haas RH, Falk MJ, Goldstein A, McCormack SE. Endocrine Disorders in Primary Mitochondrial Disease. J Endocr Soc. 2018; 2(4):361-73.
[47] K S PK, Jyothi MN, Prashant A. Mitochondrial DNA variants in the pathogenesis and metabolic alterations of diabetes mellitus. Mol Genet Metab Rep. 2024; 42:101183.
[48] Carmona Alexandrino H, Ferreira MA, Ramalho D, Jesus NR, Oliveira MJ. Endocrine Challenges in Myoclonic Epilepsy With Ragged Red Fibers Syndrome: A Case Report. Cureus. 2023; 15(12):e51114.
[49] Carli S, Levarlet A, Diodato D, Bertini ES, Martinelli D, Malandrini A, Lopergolo D, Gallus GN, Ganetzky RD, La Morgia C, Carelli V, Primiano G, Domínguez-González C, Serrano-Lorenzo P, Martín MA, Ardissone A, Lamperti C, Nicoletta V, Klopstock T, Distelmaier F, Zeng L, Büchner B, Mancuso M, Schuelke M, Prigione A, Garone C. Natural History of Patients With Mitochondrial ATPase Deficiency Due to Pathogenic Variants of MT-ATP6 and MT-ATP8. Neurology. 2025; 104(7):e213462.
[50] Yoshimi A, Ishikawa K, Niemeyer C, Grünert SC. Pearson syndrome: a multisystem mitochondrial disease with bone marrow failure. Orphanet J Rare Dis. 2022; 17(1):379.
[51] Finsterer J, Krexner E. Increased prevalence of malignancy in adult mitochondrial disorders. J Med Life. 2013; 6(4):477-81.
[52] Hong YS, Battle SL, Shi W, Puiu D, Pillalamarri V, Xie J, Pankratz N, Lake NJ, Lek M, Rotter JI, Rich SS, Kooperberg C, Reiner AP, Auer PL, Heard-Costa N, Liu C, Lai M, Murabito JM, Levy D, Grove ML, Alonso A, Gibbs R, Dugan-Perez S, Gondek LP, Guallar E, Arking DE. Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality. Nat Commun. 2023; 14(1):6113.
[53] Chatrath A, Ratan A, Dutta A. Germline Variants That Affect Tumor Progression. Trends Genet. 2021; 37(5):433-43.
[54] Stout LA, Hunter C, Schroeder C, Kassem N, Schneider BP. Clinically significant germline pathogenic variants are missed by tumor genomic sequencing. NPJ Genom Med. 2023; 8(1):30.
[55] Gerashchenko GV, Kashuba VI, Tukalo MA. Genetic and epigenetic alterations in human cancers. Biopolym Cell. 2024; 40(1):14-36.
[56] Alfattal R, Nagarajan P, O'Brien B, Quezado M, Aldape K, Ballester LY, Gubbiotti MA. A Case of a Fumarate Hydratase Deficient Astrocytoma in Association With a Germline Fumarate Hydratase Mutation With Review of the Literature: Considerations for Patients With Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) Syndrome. Am J Surg Pathol. 2025 Aug 11.
[57] Yu W, He X, Ni Y, Ngeow J, Eng C. Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation. Hum Mol Genet. 2015; 24(1):142-53.
[58] Ni Y, He X, Chen J, Moline J, Mester J, Orloff MS, Ringel MD, Eng C. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet. 2012; 21(2):300-10.
[59] Kuiper RP, Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015; 6(33):34069-70.
[60] Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol. 2020; 11(7):428-49.
[61] Li H, Hong ZH. Mitochondrial DNA mutations in human tumor cells. Oncol Lett. 2012; 4(5):868-72.
[62] Manders F, van Dinter J, van Boxtel R. Mutation accumulation in mtDNA of cancers resembles mutagenesis in normal stem cells. iScience. 2022; 25(12):105610.
[63] Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim HL, Nakagawa H, Park K, Campbell PJ, Liang H; PCAWG Consortium. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet. 2020; 52(3):342-52.
[64] Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR, Papaemmanuil E, Gundem G, Shlien A, Bolli N, Behjati S, Tarpey PS, Nangalia J, Massie CE, Butler AP, Teague JW, Vassiliou GS, Green AR, Du MQ, Unnikrishnan A, Pimanda JE, Teh BT, Munshi N, Greaves M, Vyas P, El-Naggar AK, Santarius T, Collins VP, Grundy R, Taylor JA, Hayes DN, Malkin D; ICGC Breast Cancer Group; ICGC Chronic Myeloid Disorders Group; ICGC Prostate Cancer Group; Foster CS, Warren AY, Whitaker HC, Brewer D, Eeles R, Cooper C, Neal D, Visakorpi T, Isaacs WB, Bova GS, Flanagan AM, Futreal PA, Lynch AG, Chinnery PF, McDermott U, Stratton MR, Campbell PJ. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife. 2014; 3:e02935.
[65] Hertweck KL, Dasgupta S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front Oncol. 2017; 7:262.
[66] Nguyen NNY, Kim SS, Jo YH. Deregulated Mitochondrial DNA in Diseases. DNA Cell Biol. 2020; 39(8):1385-400.
[67] Ding HJ, Zhao YP, Jiang ZC, Zhou DT, Zhu R. Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer. Balkan J Med Genet. 2023; 25(2):15-22.
[68] Shelton SD, House S, Martins Nascentes Melo L, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Allies G, Krystkiewicz J, Rösler J, Meckelmann SW, Zhao P, Rambow F, Schadendorf D, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. Sci Adv. 2024; 10(44):eadk8801.
[69] Sanchez-Contreras M, Kennedy SR. The Complicated Nature of Somatic mtDNA Mutations in Aging. Front Aging. 2022; 2:805126.
[70] Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. Geroscience. 2024; 46(5):5171-89.
[71] Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR. Clock-like mutational processes in human somatic cells. Nat Genet. 2015; 47(12):1402-7.
[72] Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, Oliver TRW, Leongamornlert D, Ellis P, Noorani A, Mitchell TJ, Butler TM, Hooks Y, Warren AY, Jorgensen M, Dawson KJ, Menzies A, O'Neill L, Latimer C, Teng M, van Boxtel R, Iacobuzio-Donahue CA, Martincorena I, Heer R, Campbell PJ, Fitzgerald RC, Stratton MR, Rahbari R. The mutational landscape of human somatic and germline cells. Nature. 2021; 597(7876):381-6.
[73] Kim M, Mahmood M, Reznik E, Gammage PA. Mitochondrial DNA is a major source of driver mutations in cancer. Trends Cancer. 2022; 8(12):1046-59.
[74] Murillo Carrasco AG, Chammas R, Furuya TK. Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics. Clinics (Sao Paulo). 2025; 80:100570.
[75] Rong F, Cheng B, Guo L, Zeng S, Xu X, Meng Z. Correlation analysis of mitochondrial DNA maintenance-related genes with HCC prognosis, tumor mutation burden and tumor microenvironment features. PLoS One. 2025; 20(6):e0325033.
[76] Tang G, Liu X, Cho M, Li Y, Tran DH, Wang X. Pan-cancer discovery of somatic mutations from RNA sequencing data. Commun Biol. 2024; 7(1):619.
[77] Wang J, Yuan T, Yang B, He Q, Zhu H. SDH defective cancers: molecular mechanisms and treatment strategies. Cell Biol Toxicol. 2025; 41(1):74.
[78] Cai Z, Yang H, Yu Z, Su J, Zhang J, Ye Z, Hu K, Huang T, Zhou H. Efficacy and safety of IDH inhibitors in IDH-mutated cancers: a systematic review and meta-analysis of 4 randomized controlled trials. World J Surg Oncol. 2024; 22(1):295.
[79] Yisraeli Salman M, Terry AR, Derkach A, Nemirovsky D, Chin KK, Valtis YK, Boussi L, Spivey T, Xiao W, Famulare C, Ciervo J, Rowe JM, Tallman MS, Stein EM. Patients with AML and an IDH2-R172 mutation exhibit a unique initial response to intensive chemotherapy induction. Blood Adv. 2025; 9(13):3213-22.
[80] Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics. 2017; 18(1):890.
[81] Kong M, Guo L, Xu W, He C, Jia X, Zhao Z, Gu Z. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. Life Med. 2022; 1(2):149-67.
[82] Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med. 2022; 50(2):104.
[83] Wu IC, Liu CS, Cheng WL, Lin TT, Chen HL, Chen PF, Wu RC, Huang CW, Hsiung CA, Hsu CC. Association of leukocyte mitochondrial DNA copy number with longitudinal C-reactive protein levels and survival in older adults: a cohort study. Immun Ageing. 2022; 19(1):62.
[84] Sourty B, Dardaud LM, Bris C, Desquiret-Dumas V, Boisselier B, Basset L, Figarella-Branger D, Morel A, Sanson M, Procaccio V, Rousseau A. Mitochondrial DNA copy number as a prognostic marker is age-dependent in adult glioblastoma. Neurooncol Adv. 2022; 4(1):vdab191.
[85] Win PW, Nguyen J, Morin AL, Newcomb CE, Singh SM, Gomaa N, Castellani CA. Simultaneous assessment of mitochondrial DNA copy number and nuclear epigenetic age towards predictive models of development and aging. BMC Res Notes. 2024; 17(1):21.
[86] Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol. 2023; 21(3):578-98.
[87] Mareckova K, Mendes-Silva AP, Jáni M, Pacinkova A, Piler P, Gonçalves VF, Nikolova YS. Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood. Transl Psychiatry. 2025; 15(1):16.
[88] Kobayashi H, Imanaka S. Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review). Int J Mol Med. 2025; 56(2):118.
[89] Srivastava S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes (Basel). 2017; 8(12):398.
[90] Yuan Y, Zhao G, Zhao Y. Dysregulation of energy metabolism in Alzheimer's disease. J Neurol. 2024; 272(1):2.
[91] Golubickaite I, Ugenskiene R, Bartnykaite A, Poskiene L, Vegiene A, Padervinskis E, Rudzianskas V, Juozaityte E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes (Basel). 2023; 14(2):434.
[92] Manto K, Ustun Yilmaz S, Pala Kara Z, Kara H, Tokat F, Akyerli CB, Uras C, Muftuoglu M, Özbek U. Association of Mitochondrial DNA Copy Number Variations with Triple-Negative Breast Cancer: A Potential Biomarker Study. Diseases. 2025; 13(6):175.
[93] Chen J, Zheng Q, Hicks JL, Trabzonlu L, Ozbek B, Jones T, Vaghasia AM, Larman TC, Wang R, Markowski MC, Denmeade SR, Pienta KJ, Hruban RH, Antonarakis ES, Gupta A, Dang CV, Yegnasubramanian S, De Marzo AM. MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight. 2023; 8(24):e169868.
[94] Mennuni M, Wilkie SE, Michon P, Alsina D, Filograna R, Lindberg M, Sanin DE, Rosenberger F, Schaaf A, Larsson E, Pearce EL, Larsson NG. High mitochondrial DNA levels accelerate lung adenocarcinoma progression. Sci Adv. 2024; 10(44):eadp3481.
[95] Kubo Y, Tanaka K, Masuike Y, Takahashi T, Yamashita K, Makino T, Saito T, Yamamoto K, Tsujimoto T, Harino T, Kurokawa Y, Yamasaki M, Nakajima K, Eguchi H, Doki Y. Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med. 2022; 20(1):383.
[96] Wang Y, Hu W, Zhou B, Zhao Y, Tang Y, Deng Z, Chen M. Mitochondrial transcription elongation factor TEFM promotes malignant progression of gliomas. Cancer Cell Int. 2024; 24(1):429.
[97] Webb BD, Diaz GA, Prasun P. Mitochondrial translation defects and human disease. J Transl Genet Genom. 2020; 4:71-80.
[98] Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol. 2022; 13:935576.
[99] Fine AS, Nemeth CL, Kaufman ML, Fatemi A. Mitochondrial aminoacyl-tRNA synthetase disorders: an emerging group of developmental disorders of myelination. J Neurodev Disord. 2019; 11(1):29.
[100] Moulinier L, Ripp R, Castillo G, Poch O, Sissler M. MiSynPat: An integrated knowledge base linking clinical, genetic, and structural data for disease-causing mutations in human mitochondrial aminoacyl-tRNA synthetases. Hum Mutat. 2017; 38(10):1316-24.
[101] Liu L, Gao J, Liu X, Zhang F, Hu B, Zhang H, Wang Z, Tang H, Shi JH, Zhang S. AARS2 as a novel biomarker for prognosis and its molecular characterization in pan-cancer. Cancer Med. 2023; 12(23):21531-44.
[102] Zheng T, Luo Q, Han C, Zhou J, Gong J, Chun L, Xu XZS, Liu J. Cytoplasmic and mitochondrial aminoacyl-tRNA synthetases differentially regulate lifespan in Caenorhabditis elegans. iScience. 2022; 25(11):105266.
[103] López-Soldado I, Torres AG, Ventura R, Martínez-Ruiz I, Díaz-Ramos A, Planet E, Cooper D, Pazderska A, Wanic K, O'Hanlon D, O'Gorman DJ, Carbonell T, Ribas de Pouplana L, Nolan JJ, Zorzano A, Hernández-Alvarez MI. Decreased expression of mitochondrial aminoacyl-tRNA synthetases causes downregulation of OXPHOS subunits in type 2 diabetic muscle. Redox Biol. 2023; 61:102630.
[104] Seton-Rogers S. Metabolic benefits of mitochondrial DNA mutations. Nat Rev Cancer. 2020; 20(12):696.
[105] Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, Hudson G, Pyle A, Houghton D, Hunt M, Sampson JN, Stamp C, Mallett G, Amarnath S, Leslie J, Oakley F, Wilson L, Baker A, Russell OM, Johnson R, Richardson CA, Gupta B, McCallum I, McDonald SA, Kelly S, Mathers JC, Heer R, Taylor RW, Perkins ND, Turnbull DM, Sansom OJ, Greaves LC. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat Cancer. 2020; 1(10):976-89.
[106] Ishida T, Nakao S, Ueyama T, Harada Y, Kawamura T. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1. Inflamm Regen. 2020; 40:8.
[107] Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr. 2025; 57(2-3):57-83.
[108] Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021; 40(19):3351-63.
[109] Sarkar S, Chang CI, Jean J, Wu MJ. TCA cycle-derived oncometabolites in cancer and the immune microenvironment. J Biomed Sci. 2025; 32(1):87.
[110] Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022; 7(1):391.
[111] Yusri K, Jose S, Vermeulen KS, Tan TCM, Sorrentino V. The role of NAD+ metabolism and its modulation of mitochondria in aging and disease. NPJ Metab Health Dis. 2025; 3(1):26.
[112] Yong J, Cai S, Zeng Z. Targeting NAD+ metabolism: dual roles in cancer treatment. Front Immunol. 2023; 14:1269896.
[113] Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD+ Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci. 2024; 25(4):2092.
[114] Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology (Basel). 2020; 9(12):485.
[115] Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022; 132(13):e158447.
[116] Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021; 112(10):3945-52.
[117] Cao K, Riley JS, Heilig R, Montes-Gómez AE, Vringer E, Berthenet K, Cloix C, Elmasry Y, Spiller DG, Ichim G, Campbell KJ, Gilmore AP, Tait SWG. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Dev Cell. 2022; 57(10):1211-25.e6.
[118] Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, Park KS, Park R, Lee IK, Shong M, Houtkooper RH, Ryu D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med. 2023; 55(8):1595-619.
[119] Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther. 2025; 10(1):91.
[120] Pan RA, Wang Y, Qiu S, Villalobos-Ortiz M, Ryan J, Morris E, Halilovic E, Letai A. BH3 profiling as pharmacodynamic biomarker for the activity of BH3 mimetics. Haematologica. 2024; 109(4):1253-8.
[121] Sagar S, Gustafsson AB. Cardiovascular aging: the mitochondrial influence. J Cardiovasc Aging. 2023; 3(3):33.
[122] Kondadi AK, Anand R, Reichert AS. Cristae Membrane Dynamics - A Paradigm Change. Trends Cell Biol. 2020; 30(12):923-36.
[123] Murata D, Ito F, Tang G, Iwata W, Yeung N, West JJ, Ewald AJ, Wang X, Iijima M, Sesaki H. mCAUSE: Prioritizing mitochondrial targets that alleviate pancreatic cancer cell phenotypes. iScience. 2024; 27(9):110880.
[124] Zhang H, Yu F, Tian Z, Jia D. Cardiolipin Remodeling in Cardiovascular Diseases: Implication for Mitochondrial Dysfunction. Acta Physiol (Oxf). 2025; 241(7):e70073.
[125] Dimitrijevs P, Freiliba I, Pčolkins A, Leja M, Arsenyan P. Total cardiolipin levels in gastric and colon cancer: evaluating the prognostic potential. Lipids Health Dis. 2025; 24(1):76.
[126] Wang YP, Zhang RQ, Li N, Wang QS, Yu K, Fan M, Zhang XW, Feng LX, Liu X. The involvement and possible targeting of cardiolipins degradation and disturbed linoleic acid metabolism in cardiac atrophy under cancer cachexia. Eur J Pharmacol. 2024; 985:177108.
[127] Yang Z, Luo Y, Yang Z, Liu Z, Li M, Wu X, Chen L, Xin W. Mitochondrial dynamics dysfunction and neurodevelopmental disorders: From pathological mechanisms to clinical translation. Neural Regen Res. 2025 Jun 19.
[128] Wang Q, Liu C. Mitophagy plays a "double-edged sword" role in the radiosensitivity of cancer cells. J Cancer Res Clin Oncol. 2024; 150(1):14.
[129] Huang J, Pham VT, Fu S, Huang G, Liu YG, Zheng L. Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies. J Hematol Oncol. 2025; 18(1):78.
[130] Mary A, Eysert F, Checler F, Chami M. Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry. 2023; 28(1):202-16.
[131] Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel). 2023; 12(5):1075.
[132] Tang MB, Liu YX, Hu ZW, Luo HY, Zhang S, Shi CH, Xu YM. Study insights in the role of PGC-1α in neurological diseases: mechanisms and therapeutic potential. Front Aging Neurosci. 2025; 16:1454735.
[133] Cheng YW, Lee JH, Chang CH, Tseng TT, Chai CY, Lieu AS, Kwan AL. High PGC-1α Expression as a Poor Prognostic Indicator in Intracranial Glioma. Biomedicines. 2024; 12(5):979.
[134] LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014; 16(10):992-1003, 1-15.
[135] Ji Z, Liu GH, Qu J. Mitochondrial sirtuins, key regulators of aging. Life Med. 2025; 4(4):lnaf019.
[136] Lagunas-Rangel FA. Sirtuins in mitophagy: key gatekeepers of mitochondrial quality. Mol Cell Biochem. 2025 Jul 24.
[137] Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology. 2024; 26(1):33.